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Abstract

A large array is an array whose storage 1is distributed among primary and
secondary storage and whose processing may be distributed among several tasks
in a distributed system. This paper presents a semantic model (set of lan-
guage concepts) for representing large arrays in a distributed system in such
a way that the performance realities iﬁherent in the distributed storage and
processing can be adequately represented. An implementation of the large ar-
ray concept as an ADA package (abstract data type) 1is described, as well as a
particular tailoring of the concept for the NASA Finite Element Machine. An

example application program using the package is also described.
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1. Introduction

Distributed processing of large data structures is an important.problem
that has received relatively little attention at the level of programming lan-
guage design. This paper presents a set of language concepts, that 1s, a se-
mantic model, to support the processing of large arrays on a variety of dis-
tributed and parallel computer architectures. The semantic model is intended
to present a unified view to the user of large arrays, so that the user may
structure his program as an érray processing program, without radical distor-
tion of the underlying algorithm. However, the arrays in question are under-
stood to be partitioned and distributed among processor memories and secondary
storage in a distributed architecture. This means that the user view cannot
simply be the traditional language view of arrays, because there are perfor-
mance realities associated with the distribution and movement of portions of
the array during distributed processing that should not be masked from the
user. As Jones and Schwarz [4] note in thelr study of use of the CM*, perfor-
mance realities in a distributed computation cannot realistically be masked
entirely from the user without a major degradation in performance of a distri-
buted system. This paper presents the semantic model, described initially as
an ADA package defining an abstract data type '"large array". An implementa-
tion design for an MIMD distributed computer, the NASA Finite Element Machine

[5], 1is described and an application for this machine 1is sketched.



2. Background

Most large scientific computations involve intensive processing of large
arrays. The potential for computational speedup by distributing array pro-
cessing in various ways among multiple processors has been the driving force
behind the design of most vector and SIMD supercomputers such as the ILLIAC-
1V, the CRAY 1, the CDC CYBER 205, and the NASA Massively Parallel Processor
(MPP) [2]. MIMD distributed systems provide an opportunity for taking advan-
tage of the parallelism inherent in these computations in different ways. The
NASA Finite Element Machine (FEM) [5], a 36 processor distributed system, and
the cMU cM” represent two radically different MIMD architectures that might
potentially be used in such applications.

Language structures proposed for array processing on parallel computers
have primarily concentrated on extension of ordinary language arrays to in-
clude specification of parallelism in certain directions, such as is done in
Perrott’s ACTUS [9]. Language proposals for distributed computation, such as
CSP (3], ARGUS [6], and ADA have not treated the problem of large data struc-
ture processing (beyond consideration of ordinary file processing).

There are two coupled problems in the distributed processing of 1large
data structures such as arrays for which we seek an effective language treat-
ment:

1. The partitioning of an array and its distributed processing on the

separate processors of an MIMD system. We seek a solution that allows large
scale concurrent processing of shared data structures without a major overhead
in task communication or unnecessary mutual exclusion as tasks traverse the
data structures. Guardians [6] and monitors, for example, provide mutual ex-
clusion but sharply limit the concurrency available, while semaphores, criti-

cal regions, and rendezvous allow more concurrency but only with a large com-

munication overhead.




2. The partitioning of an array and its diéfributed storage in both sec-

ondary stbrage and processor memories in an MIMD system. To process a large
data structure such as an arréy usually requires a complex series of data par-
titionings and data movements through a distributed system. It is this prob-
lem that presents a major difficulty even for users of conventional vector and
SIMD array computers. For example, Perrott and Stevenson [10] report that
users of the ILLIAC-IV found data partitioning and data movement to be the
most difficult aspect of programming for that machine. For distributed stor-
age, we seek a solution that frees the user from the task of managing directly
the complexities of storage and data movement inherent in the use of a distri-
buted system, without masking the critical performance realitiés involved.

The roots of our approach are found more directly in traditional language
structures for sequential file processiﬁg than in those for array
processing. Consider the PASCAL view of files. A file is a large linear data
structure in PASCAL. It might easily be considered as a one-dimensional array
rather than as a separate data type (for economy of language concept), but
Wirth avoided this temptation in the PASCAL design, as most other language de-
signers have done. The fact that PASCAL arrays are of invariant size while
files may be extended at one end is the least important difference between
files and vectors (APL, for example, allows new elements to be concatenated to
a vector). Ignoring this difference, there appear to be three main distinc-
tions between files and vectors. Each is a linear sequence of components of
arbitrary type in PASCAL, but (1) a file is a large data structure presumed to
be distributed between secondary and central memory, while a vector 1is resi-
dent entirely in central memory, (2) processing of a file at random points is
not possible, due to the distributed nature of its storage, but instead 1s

restricted to a window which makes only part of the file visible at one time,



and (3) a file has a 1lifetime that is potentially longer than that of the pro-
gram processing it, so that 1its structure is defined independently of the pro-
gram processing it.

The language concept of file processing is straightforward. A program
wishing to process a file is given a window (one component wide in PASCAL) on
the file. Processing is only possible within the window, but the window may
be moved in certain regular patterns on the file. To process an entire file,
a prograﬁ positions its window at one end, and then alternates processing and
window moving steps until the entire file has been traversed. An end-of-file
function allows the end of the file to be detected. To extend the file, the
window 1s positioned just past the end of the file, and a new component 1s as-
signed.

Implementation of file processing is also an area where distributed pro-
cessing concepts have been widely used on a limited scale. Typically, two
processors cooperate, one executing the user progtram and the other managing
the buffering of blocks of data from secondary storage into buffers in central
memory. From there the first process moves the data into user program vari-
ables (representing its processing "window") for processing as demanded by the
program. The user is effectively protected from having to manage these trans-
fers himself, but the language concepts of "window”" and "moving the window"
reflect more abstractly the performance realities inherent in the implementa-

tion structure.




3. Language Concepts for Large Array Processing

In many applications that involve processing of large arrays, the arrays
are stored and processed in a manner more similar to that appropriate for file
processing than for array processing in traditional languages. That is, the
arrays are large data structures that must be stored at least partially on
secondary storage, their lifetime is different from that of the programs pro-
cessing them, they are processed in blocks that effectively represent a pro-
cessing window on the array, and the pattern of processing involves a regular
(and often repeated) traversal of the entire structure by alternating steps of
processing and moving. We wish to provide a language semantic model to sup-
port this view of arrays and array processing, and extend it appropriately for
a distributed computation on each array.

The semantic model is based on the following concepts:

1. A large array is to be seen by the programmer as a single data struc-
ture with the same logical organization as an ordinary array. For example, a
large matrix (two-dimensional array) 1s organized as a grid of rows and
columns in the usual way. This allows the use of algorithms developed for ma-
trix processing to be used without radical distortion of their structure.

2. A large array, however, 1s not ordinarily visible to a single task as
a unit at one time. Instead a‘task sees only a part of the array through a
rectangular window. Only the part of the array visible in the window may be
accessed and modified. Thus the window is the locus of processing for the
task.

3. A window may be positioned on an array by a task and subsequently
moved as needed. Thus to process an entire array, a window is created and
positioned on the array. The data visible in the window is processed, and

then the window i1s moved to a neighboring position. Processing and moving



alternate until the array is completely traversed. A regular movement pattern
may be expressed in a task using an extension of a FOR loop (a CLU type iter-
ator mechanism [7] is appropriate). Alternatively, the MOVE operation may be
directly invoked as required.

4. A task may subdivide its window into smaller parts called subwindows.
Subwindows may be passed as parameters to subtasks for concurrent processing.
The subtasks may synchronize and communicate in the usual ways to exchange 1in-
formation during processing (e.g., to request values from a neighboring sub-
window). However, subwindows cannot be moved independently; only the entire
window may be moved. Thus the processing proceeds in phases. The window 1is
moved by the main task. The subtasks are invoked to process the data within
their subwindows. When all the subtasks have terminated, the main task may
again move the window. Partitioning of a window into subwindows is done sta-
tically as part of the window definition rather than dynamically.

5. Windows and subwindows may be created with three different types of

access privileges: Read-only, write-only, and read-write. Overlap of

read-only subwindows is aliowed, but write-only and read-write subwindows must
be disjoint.

6. Operations are provided to allow a task to detect the '"borders" of an
array (analogous to the usual end-of-file test).

7. A task may have several windows on different arrays, and these may be
moved asynchronously as needed.

8. Several tasks may have windows concurrently on the same array, but
write-only and read-write windows are not allowed to overlap.

This conceptual model for large array processing allows the language
structure to reflect the performance realities of distributed storage and pro-

cessing without unduly burdening the user with implementation details. Thus




the user may be made aware that a MOVE is costly and inhibits concurrent pro-
cessing (since all subtasks must terminate) without losing the conceptual
unity of viewing the data structure as an array (rather than as separate

blocks distributed between secondary and primary storage).

4. "Large Array" as an Abstract Data Type

The class of large arrays 1is appropriately considered as a new abstract
data type. As such it might be included as an extension to an existing lan-
guage or as part of a new language for distributed computing. To gain some
experience with use and implementation of the semantic model outlined above,
we have chosen to define the model as an abstract type within ADA, using the
generic package facility. The ADA tasking facility provides a '"virtual
computer" that may be considered as an abstract distributed machine. Within
‘this abstract machine, the LARGE_ARRAY package defines a detalled implementa-
tion of the large array model described above, and also provides a syntax (not
entirely ideal) for creating and operating on large arrays.

An important aspect of the LARGE_ARRAY abstract type is that it subsumes
the basic model for ordinary sequential file processing (exclusive of special
features for text files). Thus a one-dimensional large array (vector) repre-
sents a generalized form of sequential file, in which the window may be larger
than a single element. If two tasks each have a window simultaneously on a
single large vector, such that one is generating new elements while the other
is processing existing elements, the model becomes that of the UNIX pipe,
which 18 also an extension of the usual sequential file processing concept to

a (more restricted) distributed system.



The public specification part of the ADA generic package 1is gilven in
Appendix A. Space does not permit the complete definition to be given, so its

basic internal structure is described informally here.

Creating large arrays

As can be seen from the package definition, one or more large arrays con-
taining elements of the same type can be supported by one instantiation of the
generic package via the type LARGE ARRAY. Preexisting arrays 1in external
files can be accessed by attaching one of these large arrays via the procedure
OPEN, while new arrays can be created using the procedure CREATE. The row and
column bounds of a large array are specified at the time of associating the
large array with an external file and remain fixed during the existence of the
array. Procedure CLOSE can be used to sever the association of an internal
large array with its associated external file. Procedure DELETE deletes the
associated external file.

The package internally views a large array as a sequence of blocks, each
block being defined as a subarray of the large array as shown in Fig. 1. The
block is used as a unit for transfer of data between secondary storage and
primary memory(s). Thus the block size is implementation dependent and deter-
uined by the optimum size for I/0 data transfer.

The row and columm bounds are used to determine the total number of
blocks needed for the large array. In our ADA implementation, for each of the
blocks constituting the large array a monitor-like task of type BLOCK
CONTROLLER 1is initiated to control access to the block. The reading and wri-
ting of the block to secondary storage is performed by the associated task as
and when required. These BLOCK_CONTROLLER tasks are discussed further below

in conjunction with the implementation of window movement.




Windows

Windows are statically attached to a particular large array using the
procedure CREATE. The same procedure is also used to specify the size of the
window and 1its privileges, 1.e., whether it 1is read-only (R), write-only (W),
or read-write (RW). The row and column increments to be used for relative
movement of the window are also passed as parameters to the procedure. The
user can specify an edge element that will be used to f1ll out the portion of
the window that does not lie within the bounds of the associated large array
when the window is moved past the edge of the array.

A window is viewed by the user as an array of specified size along with
information which is private to the package. Thus the processing of the ele-
ments of the large array visible through the window is performed in a manner

analogous to
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Fig. 1. Large array with four windows, showing the division
into blocks in the ADA implementation.



the processing of an ordinary small array. That is, the accessing of window
elements is done through subscripting relative to the origin of the window

rather than the origin of the large array.

Moving a window

Two methods of window movement are provided: relative and absolute. The
MOVE procedure uses the row and column increments (defined when creating the
window) to move the window to a new position relative to the present
position. The SET procedure, on the other hand, moves the window to the indi-
cated absolute position on the array. Thus SET can be used to establish the
initial position of the window on the array.

Whenever a window is moved, a copy of the elements visible through the
window 1s provided. When the window 1is moved again, the values of the
elements are written back on the array before the move is executed. Thus each
process works on a private copy of the elements visible through the window,
and the actual array 1s ordinarily updated only when the window is moved
away. Procedures READ and WRITE are available to update the window or the as~
sociated large array respectively without actually moving the window.

Depending upon the size of the window and the position of the window
within the large array, the window may partially or fully cover one or more
blocks of the array, as shown in Fig. 1. Internally for each window a 1list of
blocks covered by the window is maintained. The procedure READ sequentially
makes an entry call to each of the BLOCK_CONTROLLER tasks associated with the
blocks 1in this 1list in order to update the appropriate portion of the
window. Similarly, WRITE makes an entry call to the tasks for updating the

appropriate portion of the blocks.
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When a window is to be moved to a new position sevéral steps need to be
performed. First the elements at the present position are updated (for write-
only and read-write windows) with calls to the tasks controlling the blocks
covered by the window. Then entry calls are made to these tasks to detach the
window from the blocks.

Next the blocks that would be covered by the window in the new position
are determined. Entry calls are made to the tasks controlling these blocks to
attach the window to the blocks. Each task determines if the window can over-
lay its block without causing an incompatible overlap with a window already
stationed on the block (since write-only and read-write windows cannot
overlap). If such a overlap would occur, the window to be moved is delayed
until the other window has moved off the position. Otherwise the
BLOCK_CONTROLLER task attaches the window to the block. Once attach entry
calls for all the blocks covered by the window have been successfully
completed, the elements at the new position are read into the window (local

array), thus completing the operation of moving a window.

Block controller tasks

Each of the BLOCK CONTROLLER tasks controlling a block of the array main-
tains a 1ist of the windows attached to the block. Since a window may be only
covering a part of the block, information about the portion of the block
covered by the window and about the corresponding part of the window which
overlays the block, is also maintained by the task for each of the windows at-
tached to it. Thus when a task accepts a READ or WRITE call for a particular
window, it can determine the appropriate portions of the window and the block

that are to be used for the purpose of reading or writing.
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A task controlling a block of the large array has four entry points (a)
attach a window, (b) detach a window, (c¢) read and (d) write. For an attach
entry call, the task checks for incompatible overlap with windows already on
its window list. If no overlap can occur or if one of the overlapping windows
is a read-only window then the window 1is attached to the window-list along
with the relevant data regarding the portion of the block being overlayed by
the window and the part of the window covering the block. Whenever a window
is attached to an empty window-list, the task controlling the block reads the
block in from secondary storage. Thus the block is resident in memory only
while a window 18 covering it.

For a detach entry call, the particular window is detached from the win-
dow-1i1st. If this causes the window-1list to become empty the block is written
back onto secondary storage. The transfer to secondary storage 1s performed
only 1if the block has been modified while it was resident in memory. In
either case, the memory required for the block is then released.

For a read entry call, the appropriate portion of the block 1is copied
into the window. Similarly for a write entry call, the copying 1is done from

the window into the block.

Mutual exclusion and deadlock

The use of an independent task controlling access to each block of a
large array in the ADA implementation provides mutual exclusion of external
tasks wishing to access the block in order to move their windows. Once a copy
of the relevant portion of the block has been made into a window, independent
external tasks can process their windows concurrently. The use of tasks for
controlling the blocks thus provides a monfitor-like mutual exclusion, but it

does not sharply limit the possible concurrency available for processing of
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the arrays. Note that direct access to BLOCK_CONTROLLER tasks is not avail-
able to the user because these tasks are hidden within the LARGE_ARRAY pack-
age.

Deadlock when several windows are moving asynchronously on the same array
is avoided by a simple resource ordering strategy. Blocks are numbered se-
quentially and become the '"resources" that must be requested in a fixed
sequence. A MOVE or SET operation must proceed by first detaching the window
from each block it covers and then attaching the window to the blocks in its
new position in the order of the block numbers. No reading or writing of por-
tions of a window may occur until the window has been successfully attached to

all the blocks it covers.

Subwindows

Subwindows can be statically overlayed on a window via the procedure
CREATE provided for this purpose. The window with which the subwindow is to
be associated, its position within the window and its privileges are passed as
parameters. The privileges of a subwindow have to be compatible with those of
the associated window (e.g., a write-only window cannot have a read-only
subwindow). Also the subwindow configuration overlaying a window should not
cause an incompatible overlap between subwindows with different privileges.

Procedure ASSIGN is used to assign a value to a particular element of a
subwindow. Function GET returns the value of a specified element. These two
subprograms work directly on the window to which the subwindow is attached
(rather than on a copy). Note that there are no procedures for moving sub-
windows; only the window on which the subwindow is overlayed can be moved. A

move automatically updates the elements in the subwindow.
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A function EOS has been provided for both a window and a subwindow to de-
termine if the window or subwindow is straddling the edge of the large array
structure. This function returns an integer signifying the particular edge or
corner that has been reached, or zero if the window or subwindow is entirely
within the boundaries of the array. Various other functions are provided to
determine the properties of large arrays, windows, and subwindows.

The semantics of the large array model has been described above in terms
of the LARGE_ARRAY package. A more complete description may be found in
[8]. The package has been implemented on the VAX 11/780 at the University of
Virginia using the UNIX implementation of the NYU ADA/ED translator and inter-

preter.

5. Implementation on the Finite Element Machine

Implementation strategies for large array processing are another aspect
of this project. Rather than fix entirely the semantic details of the general
large array model and then search for an effective implementation strategy on
different distributed architectures, we have chosen instead to explore differ-
ent tallorings of the general semantic model to fit particular architectures.

The distributed system to which we have I1mmediate access is the NASA
Finite Element Machine (FEM), currently running in a four processor version at
the NASA Langley Research Center, with a 16 procéssor version expected to be
complete by the end of 1982 and a 36 processor version available sometime in
1983. The FEM is an MIMD architecture originally designed for finite element
calculations in structural engineering. However the architecture is general
purpose except for minor details. A TI 990 minicomputer serves as a control-

ler and interface with secondary storage and the external environment. Each
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of the 36 FEM processors 1is a standard TI 9900 microcomputer with separate
local memory. There 1s no shared memory. The processors are arranged in the
form of a square array, and each can communicate directly with its eight near-
est neighbors or over a global bus to any other processor or the controller.
The local communication lines for the processors on the "logical edge'" of the
array wrap around. A separate network composed of a set of boolean "signal
flags" is provided for synchronization of the processors.

Currently for the programmer on the FEM (using Pascal), if a large array
is to be processed, the programmer must partition the array, store it on se-
condary storage in blocks, and explicitly code the transfers of the blocks
through the controller to the individual processors as needed. Adams and
Ortega [1] describe a typical finite element calculation of this sort.

The implementation design for the large array model on the FEM is orga-
nized as follows. A large array is stored on a secondary storage device in
blocks or pages. The controller memory is used as a '"staging buffer" (some-
what like a buffer in ordinary file I/0). The controller handles all requests
for movement of windows. Thus all the data structures needed to implement
windows and subwindows are maintained by the controller itself.

The controller receives requests for creating and opening large arrays
and associates large arrays with external files. The creation of windows and
subwindows is also performed by the controller. Fach time a task executes the
procedure CREATE for defining a window or a subwindow, the controller is
signaled and the relevant data is sent to it. Along with the data pertaining
to the size, position, etc., of the windows and subwindows, the controller al-
so stores information about the task or subtask (and the processor) with which

each 1s associated.
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When a task requests that a window be positioned at a particular place on
the 1large array using the SET procedure, the request 1is sent to the
controller, which brings the relevant pages from secondary storage into its
local memory, and then transfers the data to the processor memories. When a
task requests that its window be moved (by a call to the MOVE procedure), the
request is sent to the controller, which uploads the relevant blocks from the
FEM processors, modifies the pages in its "staging buffer", writes these pages
out to secondary storage, brings in the new pages required, and reloads the
processor memories with the new data. This 1s the process that now must be
done manually by the programmer. Similarly a READ or WRITE request for a win-
dow results in downloading or uploading of data to the processor memories by
the controller. Note that in the FEM implementation there is no need for the
BLOCK_CONTROLLER tasks used in the ADA implementation since all requests for
block access are handled sequentially by a single task in the controller.

Each subwindow 1is associated with a subtask on one of the FEM
processors. When subwindows are overlayed on a window, storage for each of
the subwindows of the window is allocated within each subtask. When the main
task positions the window on the large array, the data 1s downloaded on the
global bus to the subwindow area within. each subtask. The subtasks can syn-
chronize themselves using the hardware supported flag network after précessing
of the data within the subwindows has been completed. At this point, the main
task can again move the window (which results in uploading the subwindow data
to the staging buffer in the controller and the downloading of new data to the
subwindow areas in the processors). The subtasks can then be restarted to
process the new subwindow data.

In the general semantic model for large arrays, overlapping subwindows

may be used to allow one subtask to access data that 1is being processed by
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another subtask. Implementation of this structure without shared memory on
the FEM is difficult. On the FEM subtasks resident on different processors
instead may communicate directly using the local and global communication
links. Overlapping subwindows are then unnecessary and may be prohibited.

" a window and controls its movement may be resi-

The main task that "owns
dent either on the controller or on one of the processors. It may have a sub-
window itself where 1t processes the array, or it may only serve as a
synchronizer to monitor the activity of the subtasks and move the window when
each processing step has been completed.

To match the hardware realities of the FEM, we have made several restric-
tions on the general large array model:

a. A window must be either completely partitioned into non-overlapping
subwindows or it must be entirely without subwindows.

b. Subwindows are associated with subtasks statically (at the time of

their creation) rather than being passed as parameters to the subtasks.

6. Example

The Finite Element Machine has been designed to solve finite element pro-
blems in structural analysis. One of the major phases in the finite element
method of analyzing structures is the solution of a system of simultaneous
equations of the form:

Ax=D

In this section, an algorithm for solving such a system of equations,
where the matrix A is an n by n upper triangular matrix, is sketched. The al-
gorithm essentially uses a direct back solve method for solving the equations

for a set of right hand side vectors b. The algorithm has been coded in ADA

-17-



using the LARGE_ARRAY package (see Appendix B), but assuming the restrictions
of the FEM implementation rather than the general ADA implementation. A
sketch of the algorithm of Appendix B is given here; see [8] for this and
other complete algorithms.

For the purposes of this algorithm the FEM would be configured as a
linear sequence of n processors, each communicating only with its left and
right neighbors. The wrap around feature of the FEM would be used to connect
processors on the edge. For the purposes of coding the algorithm, ADA task
entry calls have been used to simulate the FEM local neighbor connections.

Each of the first n-l1 processors would have a subtask of type BACK_SOLVE
resident upon it. The subtask MAIN BACK SOLVE would be resident on the nth
processor (see App. B). The algorithm is set up so that each of the proces-
sors views one column of the array A and performs partial calculations on the
solution vector x. Thus the subtask MAIN_BACK SOLVE "receives" the right hand
side vector b and calculates the nth element of x, calculates the contribution
of the nth column of the array A and passes on the partially calculated x vec~-
tor to its left neighbor. The kth subtask BACK _SOLVE receives the partially
calculated x vector from 1its right neighbor, calculates the kth element of the
X vector, and updates the rest of the x vector.

The procedure MAIN resident on the controller declares A, X, and B as
LARGE_ARRAY’s and OPEN‘s A and B, associating them with already existing ex-
ternal files. A new file i1s created and associated with the large array X. A
read-only window, A window, 1s also defined by MAIN and associated with the
large array A. A window is defined to be as large as the entire array A and
is positioned so as to cover the whole array.

Each of the BACK SOLVE subtasks declares a subwindow, A_sw, of the window

A window and positions it such that the subwindow for subtask k is at the kth
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column of the window. Also a one element window 1is declared by each subtask
on the large array X and is initially positioned on the first column of the
kth row of X.

The subtask MAIN BACK SOLVE, in addition to the A sw subwindow and the X
window, also has a window, B_window, on the large array B. This window is
initially positioned at the first column of the array B. After processing
this first column of the B window, the subtask calculates the nth element of
the x vector, writes it in the X_yindow? passes its contribution to its left
neighbor (subtask n-1) and then moves the B_window and X window one position
to the right on the respective arrays so as to process the next b vector.
Processing and movement alternate until the end of the large array B 1is
reached (EOS(B_window) i1s negative), indicating that solution for all the
given right sides (in B) 1s complete.

The kth subtask BACK SOLVE receives k elements of the partially calcula-
ted x values from its right neighbor. It generates the kth element of the x
vector in X window, communicates k-1 pgrtially calculated x values to its left
neighbor, and then moves its X window. This is repeated until all right hand
gsides have been processed and all subtasks are at their TERMINATE SELECT al-

ternative, at which time they all terminate at once.

7. Conclusions

The large array model 1s intended to provide a conceptual unity at a
high-level to an area of distributed processing that 1s now treated only with
relatively low level primitives. The central concepts of window and subwindow
allow both the distributed storage and the distributed processing of a large

array to be represented in an applications program in a way that is natural
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for array processing but which at the saﬁe time reflects the performance real-
ities 1involved.

Implementation of the large array package on different distributed sys-
tems would take on a different form in each case. We have chosen to first de-
fine a general semantic model and then to study the tailoring of the model
that is appropriate for different distributed architectures.

There is still a great deal to be learned about the representation and
implementation of large data structures and data structure processing on dis-
tributed systems. Within the confines of this particular model, several areas
of importance are:

a. Dynamic extension of arrays. It 1is natural to comsider tasks as ex-
tending arrays in various ways during processing (continuing the analogy with
file processing in traditional languages). Although we have touched on these
issues here to a limited extent, a more complete semantics and implementation
model for such dynamic extension 1s needed.

b. Dynamic windows. The windows discdssed in this model are conceptually
static as far as their size and other parameters such as move increments are
concerned. The semantics and implementation for more dynamic windows need to
be explored.

c. Special types of arrays. The package supports only matrices in the
form given here. The extension to higher dimension arrays appears straight-
forward but needs to be explored, as well as special types of arrays such as

symmetric, sparse, and banded matrices.
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Appendix A. ADA Generic Package for Large Arrays (specification part only).

generic
type ELEMENT is private;
package LARGE ARRAY PKGE is
type LARGE_ARRAY is private;
type MATRIX is array(INTEGER range <>, INTEGER range <>) of ELEMENT;
type WINDOW_INFO is private;
type WINDOW_DESC(row_size, col _size: NATURAL) is
record
win: MATRIX(l..row_size, l..col_size);
info:  WINDOW_INFO;
end record;
type WINDOW is access WINDOW_DESC;
type SUBWINDOW is private;
type PRIVILEGES is (R,W,RW);

-~ Procedures to create or open large arrays (attach internal names to external large arrays).
procedure CREATE( ar: in out LARGE ARRAY;
row_low_bd, row_high bd, col_low_bd, col high bd: INTEGER;
name: in STRING);
procedure OPEN( ar: in out LARGE ARRAY;
row_low bd, row high bd, col low bd, col high bd: INTEGER;
name: in STRING);

-— Procedures to delete or close large arrays.
procedure DELETE( ar: in out LARGE_ARRAY);
procedure CLOSE( ar: in out LARGE_ARRAY);

~- Procedures for creating windows and subwindows.
procedure CREATE( wind: in out WINDOW;
row_size, col_size: NATURAL;
inmode: PRIVILEGES;
row_ine, col_inc: INTEGER;
ar: LARGE_ARRAY;
edge: BOOLEAN;
edge element: ELEMENT);
procedure CREATE( subwin: in out SUBWINDOW;
row_size, col_size, row_pos, col _pos: NATURAL;
inmode: PRIVILEGES;
wind: WINDOW);

—— Procedures to move windows. Note that a move implies a write of the last window position (1f the
— window is not read-only) and a read of the next position (if the window is not write-only).

procedure SET( wind: in out WINDOW; -- absolute movement
new_row, new_col: INTEGER);
procedure MOVE( wind: in out WINDOW); -- relative movement

’

——~ Procedures to read and write windows without movement of the window.
procedure READ( wind: in out WINDOW);
procedure WRITE( wind: in WINDOW);

~= Procedures to assign and get values of single elements of subwindows.
procedure ASSIGN( subwin: in out SUBWINDOW;
row, col: NATURAL;
value: ELEMENT);
function GET( subwin: SUBWINDOW;
row, col: NATURAL) return ELEMENT;

—= Functions to determine the end of structure.
function EOS( wind: in WINDOW) return INTEGER;
function EOS( subwin: in SUBWINDOW) return INTEGER;

-- Various other functions are included in the package but not listed here that
— return the various properties of large arrays, windows, and subwindows.

end LARGE_ARRAY_ PKGE;
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Appendix B. ADA Program for Parallel Solution of a Set of Simultaneous Equations.

with LARGE_ARRAY PKGE;
procedure MAIN is

package FLOAT_ARRAY 1s new LARGE ARRAY PKGE(float);

use FLOAT_ARRAY;

n: constant NATURAL; —— gize of the A matrix
m: constant NATURAL; — number of right hand sides to be solved

task type BACK SOLVE is
entry WHO_AM I(self id: NATURAL);
entry MORE;
entry NEXT(x: float);

end BACK SOLVE;

task body BACK_SOLVE is separate;

task MAIN BACK_SOLVE is
end MAIN BACK SOLVE;
task body MAIN_BACK _SOLVE is separate;

SOLVE: array (l..n-1) of BACK_SOLVE;
A,X,B: LARGE ARRAY;
A window: WINDOW;

begin
OPEN(A,1l,n,1,n,"A file"); -- Large array A is n x n; its external file name is A file.
OPEN(B,1,n,1,m,"B_file"); — Large array B is n x m; its external file name is B_file.
OPEN(X,1,n,1,m,"X file"); —- Large array X 1s n x m; 1its external file name is X file.

CREATE(A_window,n,n,R,0,0,A,FALSE);

SET(A_window,1,1);
for 1 in l..n-1 loop
SOLVE (1) .WHO_AM I (NATURAL(1));
end loop;
end MAIN;

separate (MAIN)
task body MAIN_BACK SOLVE is

B window, X window: WINDOW;
A_sw: SUBWINDOW;

begin
CREATE(A sw,n,1,1,n,R,A window);

CREATE (X window,1,1,W,0,1,X,FALSE);
SET(X_window,n,1);
CREATE(B_window,n,1,R,0,1,B,FALSE);
SET(B_window,1,1);

solve_cycle:
loop

X~-window(l,1) := B window(n,1) / A sw(n,l);

Create A window as an n x n window on Aj;
A window never moves, so its move increments are 0.
Position A _window to cover all of A.

Inform each of the SOLVE tasks of its id number.

Create A sw as an n x 1 read-only subwindow on the
nth columm of A_window.

Create X window as a 1 x 1 write-only window on X;
set the move increments to (0,1), i.e., move along
a row, one column at a time.

Position X_window at row n, columm 1l on X.

Create B window as an n x 1 read-only window on B;
set the move increments to (0,1), as noted above.
Position B_window at row 1, column 1 of B.

— Calculate the nth element of the x vector
-— and write it in the X window.

SOLVE(n-1) .MORE; -—- Signal the left neighbor, subtask n-1,
‘ —- that more is to be done.
for 1 in l..n-1 loop — Pass the partially calculated x values on to the left neighbor.
SOLVE(n-1) .NEXT(B_window(i,1) - A sw(i,l) * X window(1l,1));
end loop;
MOVE(B_window); -- Move the B window one column to the right.
MOVE (X_window); — Move the X window one column to the right.
if EOS(B_window) /= O then
exit solve_cycle —— Exit 1if processing of right sides 1is complete, i.e.,
end 1f; —— 1f B _window is outside of the B array.

end loop solve cycle;
end MAIN BACK_SOLVE;
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separate (MAIN)
task body BACK SOLVE {is

X window: WINDOW;

A_sw: SUBWINDOW;

id: NATURAL;

partial x: array(l..n) of float;

begin
accept WHO_AM I(self id: NATURAL) do
id := self-id;
end WHO_AM I;
CREATE(A_sw,n,1,1,1d,R,A window);

CREATE (X_window,1,1,W,0,1,X,FALSE);

SET(X _window,id,1);
loop
gselect
accept MORE do end MORE;
for 1 in l..1id loop

accept NEXT(x: float) do
partial x(i) := x;

— Find out your own id.

-- Create A_sw as an n x 1 read-only subwindow

— on the id°th column of A window.

— Create X window as a 1 x 1 write-only window on X;
set the move increments to (0,1), i.e., move along
- a row, one columm at a time.

-- Position X window at the 1d°th row, lst column of X.

Wait for more processing signal.
Accept 1d partial x vector values from right neighbor.

P

end NEXT;
end loop;
X window(1l,1) := partial x(id) / A sw(id,1); - Calculate the 1d’th element of the
-~ x vector and write it in X window.
SOLVE(id-1) .MORE; — Signal left neighbor subtask that more work is ready.

for 1 in l..id-1 loop

-- Pass partial x vector values to left neighbor.

SOLVE(1d~-1).NEXT(partial x(1) - A_sw(i,1) * X window(l,1));

end loop;
MOVE (X-window);
or
terminate;
end select;
end loop;
end BACK SOLVE;

— Move X window one column to the right.

~— Terminate when all subtasks are waiting for more work.
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